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Mammography is the main imaging modality for breast 
cancer detection (1–7) and is associated with reduc-

tion in breast cancer–specific mortality (1). The intro-
duction of digital mammography was associated with 
14% greater cancer detection rates (CDRs) (8). However, 
whereas screening mammography helps detect up to 98% 
of carcinomas in fatty breasts, the sensitivity declines to 
30%–48% in extremely dense breasts (1,8–10).

Data from the United States suggest that 47% of 
the screening population has dense breasts (7,11). In 
addition, researchers have proven that breast density 
is an  independent risk factor for the development 
of breast cancer (12–14), with an estimated four- to 

sixfold increase in lifetime breast cancer risk among 
women with extremely dense breast tissue relative to 
women with entirely fatty breast tissue (13). There-
fore, women with dense breasts are at higher risk of 
developing breast cancer and at greater risk of the 
cancer not being detected at mammography. The lat-
ter is due to the masking effect of overlapping dense 
fibroglandular tissue, which is radiopaque, like most 
breast cancers (9,10,14). Therefore, to overcome the 
limitation of mammography in this subgroup of pa-
tients, supplemental imaging tests have been suggested 
to increase the chance of detecting a tumor before it 
becomes symptomatic because delayed detection is 

Background: The best supplemental breast cancer screening modality in women at average risk or intermediate risk for breast cancer 
with dense breast and negative mammogram remains to be determined.

Purpose: To conduct systematic review and meta-analysis comparing clinical outcomes of the most common available  supplemental 
screening modalities in women at average risk or intermediate risk for breast cancer in patients with dense breasts and 
 mammography with negative findings.

Materials and Methods: A comprehensive search was conducted until March 12, 2020, in Medline, Epub Ahead of Print and 
 In-Process and Other Non-Indexed Citations; Embase Classic and Embase; Cochrane Central Register of Controlled Trials; and 
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cancer detection rate (CDR); positive predictive value of recall (PPV1); positive predictive value of biopsies performed (PPV3); and 
interval CDRs of supplemental imaging modalities, digital breast tomosynthesis, handheld US, automated breast US, and MRI 
in non–high-risk patients with dense breasts and mammography negative for cancer were reviewed. Data metrics and risk of bias 
were assessed. Random-effects meta-analysis and two-sided metaregression analyses comparing each imaging modality metrics were 
 performed (PROSPERO; CRD42018080402).

Results: Twenty-two studies reporting 261 233 screened patients were included. Of 132 166 screened patients with dense breast 
and mammography negative for cancer who met inclusion criteria, a total of 541 cancers missed at mammography were detected 
with these supplemental modalities. Metaregression models showed that MRI was superior to other supplemental  modalities in 
CDR (incremental CDR, 1.52 per 1000 screenings; 95% CI: 0.74, 2.33; P < .001), including invasive CDR  (invasive CDR, 1.31 
per 1000 screenings; 95% CI: 0.57, 2.06; P < .001), and in situ disease (rate of ductal  carcinoma in situ, 1.91 per 1000 screenings; 
95% CI: 0.10, 3.72; P < .04). No differences in PPV1 and PPV3 were identified. The limited number of studies prevented assess-
ment of interval cancer metrics. Excluding MRI, no statistically  significant difference in any metrics were identified among the 
remaining imaging modalities.

Conclusion: The pooled data showed that MRI was the best supplemental imaging modality in women at average risk or 
 intermediate risk for breast cancer with dense breasts and mammography negative for cancer.
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MRI has been widely established as a screening modality 
adjuvant to mammography in high-risk populations (45–47), 
but also showed an impact in average-risk women (incremental 
CDR, 15.5 per 1000 screenings) (48), especially in those with 
dense breasts (49). Reservations against its widespread use for 
screening include its high cost, limited availability, and high 
false-positive rate. However, in a recent trial (50), the incremen-
tal CDR of MRI was 5.8 per 1000 screenings accompanied by a 
strong reduction in the number of false-positive results. Abbrevi-
ated MRI demonstrated a similar sensitivity and specificity com-
pared with a full breast MRI protocol and is being investigated 
(51–54) to provide a more cost-effective modality.

Despite increasing evidence of the potential benefit of these 
modalities in supplemental screening, there are limited clinical 
guidelines that explicitly recommend using any of these supple-
mental breast cancer screening modalities in women with dense 
breasts and mammography negative for cancer (55–60). Therefore, 
our objective was to conduct a systematic review and meta-analysis 
comparing the screening performance measures of the most com-
mon supplemental screening modalities available in non–high-
risk patients with dense breasts and a negative mammogram.

Materials and Methods
Our protocol was registered at the International Prospective Reg-
ister of Systematic Reviews (PROSPERO; CRD42018080402). 
Our meta-analysis was performed by following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
2020, or PRISMA 2020, updated guidelines (61) and the 
PICO model for clinical questions (population: non–high-risk 
for breast cancer screening population with heterogeneously 
or extremely dense breasts; intervention: adjuvant modality for 
 mammography-negative patients, HHUS, ABUS, breast MRI, 
and DBT; comparison: comparative group, screening mam-
mography; and outcome measures: PPV of recall [PPV1] and of 
 biopsies performed [PPV3], incremental CDR including  invasive 
CDR and ductal carcinoma in situ [DCIS] detection rate per 
1000 screenings, and interval cancer rates).

Literature Search
A comprehensive search was conducted in consultation with the 
research team by one of the study investigators, who is an infor-
mation specialist (R.F., with 14 years of experience), from each 
database’s inception until March 2020 in Medline, Epub Ahead of 
Print and In-Process and Other Non-Indexed Citations; Embase 
Classic and Embase; Cochrane Central Register of Controlled Tri-
als; and Cochrane Database of Systematic Reviews, all from the 
OvidSP platform. Where available, both controlled vocabulary 
terms and text words were used. There was no age limit. Whereas 
there was no language restriction during the comprehensive lit-
erature search, 276 studies that were not written in English did 
not meet the eligibility criteria (Table S1, Medline search strategy).

Eligibility Criteria
All randomized clinical trials and prospective observational stud-
ies that evaluated supplemental screening modalities in patients 
with dense breasts, American College of Radiology densities C 
(heterogeneously dense) and D (extremely dense) according to 

associated with lower survival (15). The interest in apply-
ing supplemental examinations at the population level was 
intensified after legislative measures in the United States 
required women to be informed about their breast density 
and adjunct supplemental screening options (7,9,16,17). In 
this regard, the four most common supplemental modali-
ties available are handheld breast US (HHUS), automated 
whole-breast US (ABUS), digital breast tomosynthesis 
(DBT), and breast MRI.

HHUS screening increases the detection of early invasive 
node-negative breast cancers in women with mammographi-
cally dense breast tissue (1,9,10,15,18–23) with an incremental 
CDR of 2–2.7 per 1000 screenings (24). However, it requires 
qualified personnel and is associated with high screening recall 
rates and high false-positive biopsy rates. Thereby, it can be cost 
prohibitive, limiting its wide implementation as a breast cancer 
screening modality (25–31).

ABUS showed increased sensitivity from 50% to 81% (25) 
with incremental CDR of 2.5 per 1000 screenings (24) and 
was cost-effective in asymptomatic women with dense breasts 
(28,29). Like HHUS, it has high recall and  biopsy rates with 
low positive predictive values (PPVs) (30–36).  Furthermore, 
ABUS-guided biopsy has not been developed, so HHUS is 
necessary for further evaluation and biopsy of findings recalled 
from ABUS (35).

Alternatively, DBT has shown to be a tool for addressing the 
mammographic masking effect in dense breasts (11,31,37–42). 
It can be implemented in screening either as synthetic or in so-
called combination mode, also referred to as integrated three- 
dimensional full-field digital mammography and DBT. Both 
strategies have shown detection of more breast cancer than full-
field digital mammography, with an incremental CDR from 
2.2 to 2.5 per 1000 screenings (11,38–41,43,44).

Abbreviations
ABUS = automated whole-breast US, CDR = cancer detection 
rate, DBT = digital breast tomosynthesis, DCIS = ductal carcinoma 
in situ, HHUS = handheld US, PPV = positive predictive value, 
PPV1 = PPV of recall, PPV3 = PPV of biopsies performed

Summary
In women at average or intermediate risk for breast cancer with dense 
breasts and mammography negative for cancer undergoing supplemental 
screening, MRI had higher detection of breast cancer compared with 
handheld US, automated breast US, and digital breast tomosynthesis.

Key Results
 ■ According to polled data of 22 studies and 132 166 women at 

 average or intermediate risk for breast cancer with dense breasts 
and mammography negative for cancer undergoing  supplemental 
screening, compared with other supplemental modalities, MRI was 
superior in detecting breast cancer with an incremental cancer detec-
tion rate (CDR) of 1.54 cancers per 1000 screenings (P < .001) on 
metaregression analysis.

 ■ In the absence of MRI, handheld US (incremental CDR, 0.35 
per 1000 screenings; P = .22), automated breast US (incremental 
CDR, 0.26 per 1000 screenings; P = 41), and digital breast tomo-
synthesis (incremental CDR, 0.14 per 1000 screenings; P = .22) 
showed no differences in their screening performance measures.
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the lexicon from the Breast Imaging Reporting and Data Sys-
tem (62), and negative mammogram, in non–high-risk women 
despite age, were included. Categories of the assessed women 
at average risk or intermediate risk for breast cancer are based 
on prior publications (55,63). The inclusion criteria were fur-
ther defined as the following: (a) comparative study design, 
where  either similar population underwent at least two adjunct 
i maging examinations or patients were randomized to the imag-

ing tests being compared; (b) the reference standard used was 
 histopathologic analysis; (c) the results reported sufficient data to 
calculate the incremental CDR (Fig 1).

Exclusion criteria were defined as the following: retrospective 
studies, patients with scattered breast density (American College 
of Radiology density B) or entirely fatty breast (American Col-
lege of Radiology density A), studies using a single-arm design 
assessing only one imaging modality, high-risk patients (details 

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. ABUS = automated whole-
breast US, DBT = digital breast tomosynthesis, RCT = randomized controlled trial.
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regarding who met high-risk criteria are in Appendix S1) (63), 
symptomatic patients, pregnant and breast-feeding patients, and 
male patients.

Study Selection
A three-phased streamlined approach was conducted.

In phase I, results of the literature search were imported into a 
reference manager software (EndNote ×9.1; Clarivate  Analytics) 
for an independent title and abstract review completed by mul-
tiple investigators (E.A., H.H., and V.F., with 6, 15, and 20 years 
of experience in breast imaging, respectively) to evaluate the po-
tential relevant full-text articles and determine whether studies 
met the inclusion and exclusion criteria.

Phase II consisted of retrieving all full texts of potentially eli-
gible articles and further assessment for inclusion by all investi-
gators independently. Discrepancies were resolved by discussion 
and reaching consensus among investigators.

In phase III, the reviewers conducted subgroup analyses for 
each supplemental modality in relation to the screening perfor-
mance measures of mammography. They independently assessed 
the risk of bias using Quality Assessment of Diagnostic Accuracy 
Studies–2, known as QUADAS-2, tool (64) in the included stud-
ies. Disagreements over the abstract and/or full-text review and the 
risk of bias were resolved through additional consensus discussions.

Data Extraction
All investigators performed data extraction independently (E.A., 
H.H., and V.F.). Data extraction in a batch of the first five studies 
was performed in conjunction to improve familiarity and consis-
tency among the investigators. The following data were extracted 
into a spreadsheet program (Microsoft Excel 2016; Microsoft) 
using predefined forms: first author, study title, publication year, 
country of the corresponding author, journal of publication, 
study design, eligibility, number of patients (subgroups; dense/
dense with a negative mammogram), screening frequency, mam-
mographic density, patient age, screening modality (mammog-
raphy, DBT, HHUS, ABUS, or MRI), adjunct modality results, 
incremental CDR, PPV (including PPV1 and PPV3), interval 
CDR, and tumor characteristics (size, invasive or in situ disease, 
and lymph node involvement).

Quality Assessment
Independent quality assessment of all included studies was 
 performed using the revised tool for QUADAS-2 (64). Mul-
tiple investigators (E.A., H.H., and F.V.) assessed all articles 

 independently for the following criteria: patient selection, index 
test,  reference standard, flow, and timing (64,65). The follow-
ing criteria were defined considered high risk of bias: random 
or consecutive patient selection was not used (patient selection); 
radiologists were not blinded to previous clinical and/or imaging 
data (index test 1); the method by which patients are assigned to 
a specific imaging test may have introduced bias, for example, if 
the patients were allowed to choose (index test 2); the  reference 
standard, histopathologic analysis, was not offered equally to 
all patients who needed a biopsy to exclude underlying cancer 
 (reference standard); and flow and timing for at least two in-
dex tests were performed more than 3 months apart (flow and 
 timing). Discrepancies were resolved by consensus.

Outcomes
The primary outcome of our meta-analysis was the incremental 
CDR, including invasive CDR and DCIS rate of each supple-
mental modality. The incremental CDR (62) was defined as the 
number of cases of cancer detected only at the adjunct  modality 
(not at mammography) divided by the total number of screening 
 examinations performed, reported as a rate per 1000 screenings. 
In addition, secondary outcomes were included in the analy-
sis: PPV (PPV1 and PPV3) and interval cancers. The  invasive 
CDR and DCIS detection rates were defined as the number of 
d etected cases of invasive cancer and in situ  disease  divided by 
the total number of screening examinations performed, reported 
as a rate per 1000 screenings, respectively. The PPV was  defined 
as the total number of cases of cancer  detected divided by the 
total number of recalled screening examinations based on ab-
normal findings at screening examination (PPV1) and based on 
biopsy results (PPV3).

Statistical Analysis
The data were handled by one of the coauthors (S. Keshavarzi) 
based on grouping and comparing the diagnostic performance 
of each supplemental screening modality. Forest plots were gen-
erated to demonstrate the data for each specific study. Results 
were presented separately in each subgroup and were defined by 
different modalities (HHUS, ABUS, DBT, and MRI). In addi-
tion, we provided the number of cancers, screens, and pooled es-
timates with 95% CIs for both the proportion of screen-detected 
cancers in all women with a recommendation other than routine 
screening (PPV1) and the proportion of screen-detected cancers 
in women with a performed biopsy (PPV3). For the incremental 
CDR, invasive CDR, and DCIS, rates per 1000 were used to 

Table 1: Summary of Number of Screening Patients, Number of Eligible Patients with Dense Breast and Negative Mammogram, 
and Patient’s Characteristics in the Included Studies by Test Modality

Imaging  
Modality

No. of Screening  
Patients

No. of Patients with Dense Breast  
and Negative Mammogram

Patient Age  
Range (y)

Patient  
Sex

HHUS 140 613 71 921 25–96 Female
ABUS 28 899 22 540 24–94 Female
DBT 67 587 30 684 40–79 Female
MRI 43 577 7 021 30–75 Female

Note.—ABUS = automated whole-breast US, DBT = digital breast tomosynthesis, HHUS = handheld US.
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Figure 2: Forest plots show the incremental cancer detection rate (CDR) per 1000 screenings 
per modality. (A) Studies with handheld US. (B) Studies with automated whole-breast US. (C) 
Studies with digital breast tomosynthesis. (D) Studies with MRI.

estimate the pool detection rates and the 95% CI. 
Prespecified metaregression analysis was performed 
by comparing the screening performance measures of 
different imaging modalities. To assess the heteroge-
neity among the studies, the I2 value was calculated. 
Values greater than 50% were considered at risk for 
substantial variability. The results of both fixed and 
random effects models were provided in the forest 
plots. However, because the studies were from differ-
ent populations, random effects model results were 
used to estimate the pooled rates to allow for hetero-
geneity between studies and within-study sampling 
variability. All statistical analyses were performed us-
ing software (R version 3.6.3; R Foundation for Sta-
tistical Computing) by meta and metasens packages. 
A P value less than .05 was considered to indicate 
statistical significance.

Results

Study Demographics and Risk of Bias
The meta-analysis PRISMA diagram is shown in Figure 
1. An initial 7549 studies underwent title and abstract 
screening. Phase I screening resulted in 213 potentially 
eligible articles retrieved for full-text review. Further 
exclusion of retrospective studies and editorial articles 
resulted in 40 eligible articles. Finally, we included 
22 articles (4,10,19,20,25,28,29,32,34,36,38,39,  
44,48,49,52,66–71) encompassing 261 233 screened 
patients, 120 081 of whom had dense breasts and a 
negative mammogram. However, Chen et al (52) as-
sessed abbreviated MRI protocol and full-diagnostic 
MRI protocol in the same article, and Lång et  al 
(38,39) assessed different performance metrics of the 
same population in two distinct articles. Kim et  al 
(10) and Tagliafico et al (32,70) assessed HHUS and 
DBT in the same population, and Bernardi et al (44) 
assessed digital mammography with DBT (combina-
tion mode) and synthetic mammography in the same 
article. Therefore, considering the sum of screened 
patients with different imaging modalities, 132 166 
women with dense breasts and mammography nega-
tive for cancer met the inclusion  criteria. Ten ar-
ticles (4,10,19,20,25,32,67–70) reported on HHUS 
(71 921 patients with dense breasts; age range, 25–96 
years), four articles (28,29,34,36) reported on ABUS 
(22 540 patients with dense breasts; age range, 24–94 
years), three articles (48,49,52) reported on MRI 
(7021 patients with dense breasts; age range, 30–75 
years), eight articles (9,32,38,39,44,66,70,71) re-
ported on DBT (30 684 patients with dense breasts; 
age range, 40–79 years). Table 1 summarizes the num-
ber of screening patients, number of eligible patients 
with dense breasts and mammography negative for 
cancer, and patient characteristics in the included stud-
ies by test modality. Table S2 provides a summary of 
the included studies.
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Of 8061 participants invited for MRI, Bakker et al (49) con-
sidered 103 patients (1%) ineligible for MRI without further 
clarification, which was not considered a potential risk of bias 
because of the small number of participants excluded. Neverthe-
less, a potential risk of bias was found in all other studies. The 
main sources contributing to a high or unclear risk of bias were 
related to patient selection (from nonrandomization) or the in-
dex test (radiologists unblinded to previous imaging or clinical 
data), and/or flow and timing (eg, at least two index tests were 

performed more than 3 months apart). Table S3 
summarizes the risk of bias.

Data Synthesis and Pooling
Of 132 166 screened patients with dense breasts 
and mammography negative for cancer who met 
the inclusion criteria, 541 cancers missed at mam-
mography were detected by using  supplemental 
modalities. Forest plots and pooled estimates of 
the mean incremental CDR, invasive CDR, PPV1, 
and PPV3 are shown in Figures 2–5. Forest plots 
and pooled estimates of interval cancer and DCIS 
are in Figures S1 and S2. The forest plots showed 
a higher MRI incremental CDR compared with 
other supplemental modalities. The incremental 
CDR of MRI is 25.7 (95% CI: 17.4, 37.9); for 
HHUS, 4.3 (95% CI: 2.6, 7.0); ABUS, 4.3 (95% 
CI: 1.7, 10.8); and DBT, 4.8 (95% CI: 3.1, 7.7). 
The completed results are summarized in Table 2.

Not all studies documented the tumor stage 
of the additional invasive cancers detected at each 
modality. The smallest tumor size with negative 
node involvement was depicted at MRI (mean 
size, 9.5 mm) in the study by Bakker et al (49), 
followed by HHUS (mean size, 11.83 mm) 
(4,10,19,32,67,70), DBT (mean size, 13.0 mm) 
(10,32,70), and ABUS (mean size, 16.3 mm) 
(28,29,36).

I2, P value, and t2 are presented, and I2 values 
greater than 50% were considered at risk for sub-
stantial variability (65). Only MRI was associated 
with a low risk of heterogeneity for incremental 
CDR (I2 = 31%), DCIS (I2 = 14%), and PPV3 (I2 
= 34%). DBT, HHUS, and MRI were associated 
with a low risk for substantial heterogeneity for 
invasive CDR (I2 = 15%, I2 = 29%, and I2 = 36%, 
respectively). Otherwise, all modalities and all pa-
rameters were associated with statistically signifi-
cant heterogeneity. The heterogeneity index using 
the I2 statistic is quantitatively shown in Table S4.

Table 3 shows the metaregression models and P 
values  corresponding to the two-sided metaregres-
sion analyses comparing each imaging modality 
statistically for incremental CDR, invasive CDR, 
DCIS, PPV1, and PPV3, using mammography as 
a reference. Metaregression models showed that 
MRI was  statistically superior to other supplemen-
tal modalities with MRI incremental CDR per 

1000 screenings (1.54; 95% CI: 0.74, 2.33; P < .001) versus 
HHUS (−0.35; 95% CI: −0.77, 0.08; P = .11), ABUS (−0.26; 
95% CI: −1.07, 0.56; P = .53), and DBT (−0.14; 95% CI: 
−0.58, 0.29; P = .51). We found no evidence of differences in 
PPV1 and PPV3. A limited number of studies prevented assess-
ing interval cancer metrics. Moreover, in an attempt to provide 
another supplemental modality as an alternative to MRI, when 
excluding MRI, no evidence of a difference in screening perfor-
mance measures was identified among the remaining imaging 

Figure 3: Forest plots show invasive cancer detection rate per 1000 screenings per modality. 
(A) Studies with handheld US. (B) Studies with automated whole-breast US. (C) Studies with digi-
tal breast tomosynthesis. (D) Studies with MRI.
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modalities (HHUS, −0.35 [95% CI: −0.78, 0.09; 
P = .12]; ABUS, −0.26 [95% CI: −1.09, 0.57; P = 
.54]; DBT, −0.14 [95% CI: −0.58, 0.29; P = .52]; 
Table 4). The negative CI corroborates the nonsta-
tistical significance of HHUS, ABUS, and DBT 
compared with MRI and when MRI is excluded.

Discussion
The best supplemental breast cancer screening 
modality in non–high-risk patients with dense 
breasts and mammography  negative for cancer 
remains to be determined. Our results showed 
that MRI was statistically superior to other sup-
plemental  modalities with incremental cancer de-
tection rate per 1000 screenings (1.54; 95% CI: 
0.74, 2.33; P < .001) versus handheld US (−0.35; 
95% CI: −0.7, 0.08; P = .11), automated whole-
breast US (−0.26; 95% CI: −1.07, 0.56; P = .53), 
and digital breast tomosynthesis (−0.14; 95% CI: 
−0.58, 0.29; P = .51). No differences in positive 
predictive value (PPV) of recall or PPV of biopsies 
performed were identified. The limited number of 
studies prevented assessing interval cancer met-
rics. Excluding MRI, no difference in any met-
rics was identified among the remaining imaging 
modalities.

Our results confirm the expected higher CDR 
of breast MRI as an adjunct breast screening mo-
dality in women with dense breasts and mammog-
raphy negative for cancer, which has been widely 
documented in the high-risk population (72–82). 
The results of our study also comply with previously 
published studies that demonstrated the benefit of 
MRI in detecting breast  cancer in a population at 
intermediate risk, including those with a  personal 
history of breast cancer (83). It is essential to em-
phasize the demonstrated superiority of MRI in 
depicting the smallest invasive disease (invasive 
CDR, 1.31; 95% CI: 0.57, 2.06; P ≤ .001) and 
in detecting DCIS (1.91; 95% CI: 0.10, 3.72;  
P = .04), which according to previous studies 
(84,85) may  impact long-term survival.

As shown on the incremental CDR forest plot (Fig 2), the 
number of studies of HHUS that met the inclusion criteria ex-
ceeded those of MRI and ABUS, which is understandable be-
cause HHUS is widely available due to its low cost and lack of 
radiation (86). However, even in a few studies, the effect of MRI 
in incremental CDR was large enough for a statistically signifi-
cant difference, with an MRI incremental CDR of 25.7 (95% 
CI: 17.4, 37.9). For ABUS, the point estimates were smaller, 
indicating that the statistically nonsignificant results were caused 
by smaller effect sizes and not by lack of statistical power, with 
ABUS incremental CDR of 4.3 (95% CI: 1.7, 10.8).

Although metaregression analysis shows that there is no 
 statistically significant difference in the MRI PPV1 or PPV3, 
which can be attributed to fewer MRI studies included in the 
analysis, MRI showed generally higher PPVs compared with 

HHUS and ABUS (PPV1 of MRI vs HHUS vs ABUS, 27.7 
[95% CI: 15.2, 45.0] vs 18.2 [95% CI: 9.5, 32.2] vs 17.4 
[95% CI: 15.6, 19.2], respectively; and PPV3 of MRI vs 
HHUS vs ABUS, 34.3 [95% CI: 24.8, 45.1] vs 9.1 [95% CI: 
3.3, 22.5] vs 22.8 [95% CI: 1.6, 84.7], respectively). This may 
represent another important benefit of MRI in this setting be-
cause higher false-positive rates increase patient anxiety and the 
cost burden on the health care system from additional imaging 
workup, short-interval  follow-up, or biopsy (87).

Worldwide availability of MRI remains limited not only 
from lack of sufficient scanners but also because of its high cost, 
which prevents accessibility to available scanners and causes a 
lack of fellowship-trained expertise. Although the shorter im-
age acquisition and interpretation times of abbreviated MRI 
potentially represent a more cost-effective alternative in this 

Figure 4: Forest plots show positive predictive value of recall (PPV1) per modality. (A) Studies 
with handheld US. (B) Studies with automated whole-breast US. (C) Studies with digital breast 
tomosynthesis. (D) Studies with MRI.
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scenario (54), the need for contrast agent injection and the 
known gadolinium accumulation in the brain with both the 
standard and abbreviated MRI protocols have uncertain clini-
cal significance (88). None of the other potential supplemental 
modalities showed similar performance to MRI in the incre-
mental rate of cancer detection and, therefore, understanding 
the pros and cons, MRI is considered the best supplemental 
imaging modality.

Point estimate I2 showed higher variability among the 
studies, which may be attributed to the variable selection 
of patients between studies (eg, differences in inclusion cri-
teria, such as differences in patient age), as shown in Table 
S3. This could be attributed to different design methods 
(we included a combination of randomized controlled tri-
als and observational longitudinal prospective studies) and 

publication bias, potentially  impacting the esti-
mated effect across the studies (89). We used the 
random effects model to enable summarization 
of the  results and to draw conclusions despite 
the heterogeneity. The random effects model 
assumes that the estimated effect varies around 
some overall average estimated effect, whereas 
the fixed effects model assumes that each study 
used the same fixed common estimated effect 
(90). In addition, based on the incremental 
 detection rate point estimates and CIs (Table 
3), bias in the individual studies had a mini-
mal impact on the results. Despite the variabil-
ity within modalities, the large observed effects 
across all MRI studies allowed us to conclude 
that MRI has superior performance to the other 
modalities. However, the high heterogeneity 
makes it difficult to draw conclusions about 
the relative effectiveness of HHUS, ABUS, and 
DBT.

Our study had limitations. First, retrospec-
tive studies were excluded from the analysis to 
reduce the potential confounders associated 
with selection bias. This exclusion limited the 
number of studies and, therefore, statistical 
power. Second, most of the included studies as-
sessed breast density by subjective visual assess-
ment. Therefore, some patients may have been 
inaccurately assessed as having dense breasts. 
Third, there is evidence that DBT performance 
is limited in those with extremely dense breasts 
(density D) (9,36,65). As such, the combina-
tion of heterogeneously dense breasts (density 
C) and extremely dense breasts (density D) 
could have influenced the result. Also, some 
patients may have been misinterpreted as an 
average or intermediate risk because of a lack 
of perception of combined factors that could 
lead to high-risk profile. We expect that ar-
tificial intelligence may surpass these current 
limitations by allowing automatic assessment 
of breast density and risk stratification. Finally, 

our meta-analysis only included studies that were published 
until March 2020. Therefore, an update of these results is 
expected as more evidence emerges on the usefulness of the 
current modalities discussed or even other modalities, such 
as vascular imaging modalities (eg, contrast mammography, 
molecular imaging studies), which can merge morphologic 
and functional imaging, providing information about ana-
tomic changes and metabolic activity of breast tissue, re-
gardless of breast density (91–94).

In conclusion, in patients with dense breasts and mam-
mography negative for cancer undergoing supplemental 
breast cancer screening, MRI showed superior detection 
of breast cancer compared with handheld US, automated 
whole-breast US, and digital breast tomosynthesis. It is 
too early to advocate worldwide for the implementation of 

Figure 5:  Forest plots show positive predictive value of biopsies performed (PPV3) per  
modality. (A) Studies with handheld US. (B) Studies with automated whole-breast US. (C) Studies 
with digital breast tomosynthesis. (D) Studies with MRI.
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supplemental MRI because more studies are needed to make 
conclusions about the relative effectiveness of the other mo-
dalities and because the effectiveness of MRI, in terms of 
mortality reduction and cost-effectiveness analysis, has not 
yet been examined; this is the next logical step to consoli-
date these preliminary findings.
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Table 2: Pooled Estimates of the Mean Screening Performance Measures for Each Supplemental Imaging Modality

Parameter HHUS ABUS DBT MRI
Incremental CDR per 1000 screenings 4.3 (2.6, 7.0) 4.3 (1.7, 10.8) 4.8 (3.1, 7.7) 25.7 (17.4, 37.9)
Invasive CDR per 1000 screenings 4.5 (3.4, 6.0) 4.1 (1.1, 15.9) 3.2 (2.2, 4.6) 19.9 (11.9, 33.4)
Interval cancer per 1000 screenings 0.6 (0.4, 0.9) 3.0 (1.2, 7.2) NA* 0.8 (0.3, 2.2)
Incremental DCIS per 1000 screenings 0.5 (0.1, 4.5) 0.1 (0, 0.6) 1.0 (0.1, 12.6) 4.4 (2.3, 8.4)
PPV1 18.2 (9.5, 32.2) 17.4 (15.6, 19.2) 12.2 (4.3, 30.0) 27.7 (15.2, 45.0)
PPV3 9.1 (3.3, 22.5) 22.8 (1.6, 84.7) 45.2 (29.8, 61.5) 34.2 (24.8, 45.1)

Note.—Data are in 32 166 screened patients with dense breasts and a negative mammogram. A total of 541 cancers missed at 
mammography were detected. Data in parentheses are 95% CIs. ABUS = automated whole breast US, CDR = cancer detection rate,  
DBT = digital breast tomosynthesis, DCIS = ductal carcinoma in situ, HHUS = handheld US, NA = not applicable, PPV1 = positive 
predictive value of recall, PPV3 = positive predictive value of biopsies performed.
* Due to limited number of studies (either one or no studies for that specific variable).

Table 3: Metaregression Comparing the Screening Performance Measures of Different Imaging Modalities

Performance Measure* β Value Standard Error P Value†

PPV1
 HU 0.19 (−0.89, 1.27) 0.55 .73
 ABUS −0.22 (−3.44, 2.99) 1.64 .89
 DBT −0.42 (−1.54, 0.70) 0.57 .46
 MRI 0.38 (−1.53, 2.30) 0.98 .70
PPV3
 HU −0.63 (−1.49, 0.24) 0.44 .16
 ABUS 1.23 (−0.71, 3.17) 0.99 .21
 DBT 0.60 (−0.46, 1.65) 0.54 .27
 MRI 0.21 (−1.39, 1.82) 0.82 .79
Incremental CDR per 1000 patients
 HU −0.35 (−0.77, 0.08) 0.22 .11
 ABUS −0.26 (−1.07, 0.56) 0.41 .53
 DBT −0.14 (−0.58, 0.29) 0.22 .51
 MRI 1.54 (0.74, 2.33) 0.40 <.001
Incremental DCIS per 1000 patients
 HU −0.54 (−1.59, 0.52) 0.54 .32
 ABUS −1.27 (−3.78, 1.24) 1.28 .33
 DBT −0.29 (−1.52, 0.94) 0.63 .64
 MRI 1.91 (0.10, 3.72) 0.92 .04
Invasive CDR per 1000 patients
 HU −0.30 (−0.70, 0.09) 0.20 .14
 ABUS −0.24 (−1.01, 0.53) 0.39 .54
 DBT −0.22 (−0.69, 0.25) 0.24 .36
 MRI 1.31 (0.57, 2.06) 0.38 <.001

Note.—For interval cancer, because the number of studies were so limited the model could not be fitted. Standard error is a measure of the 
uncertainty in the regression parameter due to the observed variability across studies and the sample size. ABUS = automated whole breast 
US, CDR = cancer detection rate, DBT = digital breast tomosynthesis, DCIS = ductal carcinoma in situ, HHUS = handheld US, NA = not 
applicable, PPV1 = positive predictive value of recall, PPV3 = positive predictive value of biopsies performed.
* Mammography was treated as the reference group for comparison in the metaregression models.
† The P values correspond to the two-sided metaregression analyses comparing each imaging modality. A P value less than .05 was 
considered to indicate statistical significance.
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